Modifications to UNIX} to Allow Four Mega Bytes of Main
Memory on a 11/40 Class Processor

Clement T. Cole

Computer Research Group
Computer Research Laboratory
Tektronix Laboratories

Sterling J. Huzley

Computer Resource Department
Technology Group

ABSTRACT

This paper describes the modifications to UNIX Version
7, to efficiently use the 4 Megabyte extented addressing
capabilities of a 11/40 class processor after hardware
modification. Discussed are the reasons why such
changes are desirable, what parts of the machine are
effected and a few comparisons of the results.

Jdune 20, 1981

t UNIX is & Trademark of Bell Laboratories.

Modifications tc UNIX} to Allow Four Mega Bytes of Eain
Memory on a 11/40 Class Processor

Clement T. Cole

Computer Research Group
Computer Research Laboratory
Tektronix Laboratories

Sterling J. Ruzley

Computer Resource Department
Technology Group

Introduction

We will be describing the changes that were made to a
standard UNIX system to allow the addition of extra main memory
beyond that DEC normally allows. We will first be discussing the
reasons for such radical departure from a normal system. Next we
will discuss the changes made, and the effects that these non-
standard hardware and software changes have to a user program.
Last of all we will look at some performance statistics and see how
they relate to the earlier justification for this work being started.

History

In 1972, Ritchie and Thompson released to the world the Fifth
Edition of the UNIX Timesharing System[1]. This system was
designed to run with minimal hardware. In 1978, the Seventh
Edition of UNIX was released with the caveat that it must run on
larger PDP/11 systems. The term "larger’ was intended to mean
DEC PDP 11's with a hardware kludge to allow a seventeenth
address bit. This kludge is known as the separate instruction and
data bit!. This bit separates instruction and data fetchs to main
memory on the Unibus[2]. The term "“minimal” included the 11/40
and 11/35 processors that do not support the separate 1/D
feature. In those 6 years and two releases of UNIX what happened?

For a first order view, UNIX was improved, at the expense of
size. These improvements were assorted, from simple bug fixes, to
modernize an original design decision that became inappropriate.
The fundamental change was to correct for a hardware problem

t UNIX is a Trademark of Bell Laboratories.

1] Another term for this feature is: separate] and D

-2 -

that became acute over those same 6 years: disk technology
improved drastically, forcing the earlier file block? to physical disk
block mapping to be unusable.

The Seeking Problem

Vhen UNIX Version 6 was released, UNIX was forced into viewing
each large, DEC RP03 style, disk as many smaller pseudo disks.
This feature was introduced because the fundamental data size on
a PDP 11 is a 16 bit integer. An RP03 has more than 65536
physical blocks per disk. Later DEC introduced the RP06 disks
that contains about 150 Megabyte of storage. Technology was
bound to improve again, making the pseudo disk solution a little
unbearable. Clearly, there are times when a user would wish to
address every physical block on the disk.

Generic UNIX does supports a system call to allow a user
program to address any byte in a file. The seek system call takes
three parameters[3]. The descriptor of the file to seek on, the
amount to seek, and a third parameter that specifies the type of
seek, i.e. seek relative from the beginning, end or current file
position. The UNIX operating system supports a data abstraction
that allows a user program to view any device as a sequential file
of bytes. Using the seek system call and this data abstraction, we
can write programs to manipulate any byte on any diskS.
Unfortunately, as we discussed before, the operating system had
difficulty building the complete abstraction for large disks. These
principles beget Version 7’s new seek system call.

In Version 7, the seek system call was removed and replaced
with a Iseek (long seek) system call[4]. The difference between the
two calls is that the parameter that specifies a seek count, was
changed from a short integer (16 bits), to a long integer (32 bits).

The change from a short to a long had major ramifications.
Not only did it nearly double the size of many of the already large
tables that the operating system needed to keep in main memory,
but in the operating system size was increased in tiny increments
by arithmetics. What used to be a add instruction, now needs to
be an inline expansion for 32 bit arithmetic. Not that these
changes are terrible, but many of these expansions have the
tendency to slowly add to the size of the kernel. See the appendix

2] A block is the fundamental unit of storage on a disk drive. It contains 512
bytes of 8 bits each.

3] An example of a program that would like to manipulate an entire disk at a
time is a program that operates on entire file systems, like dump(1m),
restor(1m), and icheck(1m).

- 8-

for a demonstration of the cede expansion problem.

Solutions to Address Space Limitaticns

The Version 7 UNIX Kernel {adding both instruction and data)
would not fit into the 64k byte limit that a PDP 11/40 class
processor imposes, and still be able to have a several runable
processes in the kernel process tables. To be truthful, large UNIX
Version 6 systems had much difficulty fitting into the 11/40’'s
address constraints. Many different groups created ingenious
schemes to win back kernel space. The most notable were the
Calgary Buffer Modifications that moved the system 1/0 buffers out
of the normal kernel address space and made the system change
its memory management registers to address the data in those
buffers. For small 11/40 installations these modifications were
not completely necessary. However, if these modifications were
not installed, UNIX would have to be ‘‘shoe horned” into fitting the
address space available from the DEC 16 bit virtual addresses.
When Version 7 came, these modifications became necessary for
even the smallest 11's to be able to run more than five or six
processes (not users) at the same time. Soon, another interesting
method was suggested by people at UC Berkeley[5]. They suggest
that the kernel be ‘“‘overlayed.” This overlay scheme is not a
classical disk overlay, but for efficiency, an in memory overlay.
Meaning that the whole kernel would be kept in main memory at
one time, and the memory management registers changed as
needed.

The “in-memory’” overlay method, when it is used with the
Calgary buffer modifications, seems to be among the best methods
of gaining back kernel address space to date. Unfortunately,
these modifications have one unhappy side effect. They trade off
kernel size at the expense of available user memory. A PDP-11/40
class processor's memory management unit can only address 18
bits (256 K bytes) of main memory. It is easy for a UNIX kernel to
become greater than 1/2 of that size and in some cases be closer
to 3/4’s of our 256 K byte limit. Remember that the reason for
letting the size of the kernel become large in the first place was to
allow more that a few processes to try to run at the same time. We
now have enough kernel buffers, but not enough main memory;
and unhappy Catch 22. To this end, the software people asked the
hardware people for a little help.

Able Computer Corp. produced exactly what was needed. They
have a new memory management board called: ENABLE. This
board works in conjunction with the DEC memory management
unit to produce 22 bit's worth of address on a machine that

previously had 18 bit’'s worth. Making the theoretical size, of the

_4..

address space of this new hybrid 11/40 class processor?, 4 mega-
bytes.

The ENABLE board plugs into a new backplane and creates a
new 22 bit Modified Unibus[6]. It works without other
modifications to the hardware.

With the use of this new hardware UNIX now can address the 22
bit's of address space needed. By overlaying the UNIX kernel, and
for that matter, any user program, it is capable of growing
extremely large. The changes to the UNIX kernel to support the
ENABLE board have no affect on user programs.

The Able ENABLE Board

When a program runs on a unmapped PDP-11, the processor
will produce a 16 bit address. With mapping turned on, this 16 bit
address is referred to as a virtual address. To produce a 22 bit
physical address there are two relocations that a virtual address
must go through. The DEC relocation hardware will produce an 18
bit address. The ENABLE relocation will transform the DEC 18 bit
address into a 22 bit physical address.

1. DEC relocation

A 16 bit DEC virtual address (VA), produced by the PDP 11 cpu,
builds a 18 bit DEC physical address (PA) as follows:

DEC VA bits 13-15 (three bits) are used to index one of 8 DEC
Page Address Registers or PAR's. The lower 12 bits of the
indexed DEC PAR are added to the DEC VA bits 6-12 (seven
bits) to produce a 12 bit field which goes into bits 8-17 of the
DEC PA. Bits 0-5 of the DEC VA are concatenated with the
result to produce DEC PA bits 0-5.

The 18 bit DEC PA is now gated to a normal 18 bit Unibus.

2. ENABLE Relocation

The ENABLE relocation process is analogous to the DEC
relocation.

The ENABLE PAR's are indexed by bits 13-17 of the DEC PAS.

4] The name of the macro that we have used in code found in the appendix
for this new hybrid is FORTYZ. We will have the standalone system set the
global variable '‘cputype’” to 1 greater than the normal. e.g. 41 for an
11/40 class processor and 46 for an 11/45 class processor.

5] 6 index bits means that 32 PAR's can be accessed but only 16 can be used
for an 11/40 installation. The other 18 PARs can be used by an 11/45
class processor. For the 11/40 we are using B for kernel and 8 for user

-5-

The contents of the indexed ENABLE PAR are added to bits 6-
12 of the DEC PA to yield a 16 bit field which is placed in bits
6-21 of the ENABLE PA. Bits 0-5 of the DEC PA are again
concatenated with the result to produce ENABLE PA bits 0-5.
Note that is means that the original DEC VA Bits 0-5 are passed
unchanged to ENABLE PA bits 0-5.

This 22 bit address is now gated on to a special 22 bit
MODIFIED Unibus. This new Modified Unibus is electrically the
same as the one found in an 11/44.

Setting up the Two Memory Management Units.

In order to achieve 22 bit relocation, the DEC Memory
Management Unit must be effectively NOP-ed. This is done by
placing data into the DEC PARs so that when the DEC 18 bit
translation is operating, the 18 bit result will index into the
ENABLE PARs without adding any other relocation. Because we
know that the ENABLE board uses the upper 5 bits of the DEC 18
bit PA as an index, we should only set these bits in the DEC PARs.
Contained inside a short routine in mch40.s, we will once and only
once, set the contents of the DEC PARs. After that time, our new
UNIX will use the ENABLE PAR'’s like the older versions had used the
DEC PAR's.

3. Setting up DEC Page Address Registers
The DEC Kernel PAR's (DKP) should be initialized as follows:

DKPO = 0000
DKP1 = 0200
DKP2 = 0400
DKP3 = 0600
DKP4 = 1000
DKP5 = 1200
DKP86 = 1400
DKP7 = 7600

Notice that the lower 7 bits of each number are 0. Bits 7-10 of
the DEC PAR is used as an index into the ENABLE PAR's.

To explain why 7600 is placed into DKP7, we must remember
that there exists a short period of time when DEC memory
management is turned on and ENABLE memory management turn
off. During this window, there are references made to the 170 page
when we activate the ENABLE Board. Meaning, the DEC memory

operations. For an 11/45, we would have 8 for kernel 1 space, B for kernel
D space, 8B for user I space and 8 for kernel D space.

-6 -

management must be set up to handle references to the 170 page
with and withcut the ENABLE board active. DKP7 being 7800
means that when ENABLE memory management is on all
references to the 170 page go through ENABLE PAR 31 (DKP7 bits
7-11 = 31). The DEC kernel PAR's index into ENABLE PAR's 0-6 and
31. Note therefore that we are using 7 ENABLE PAR’s and then
skipping the next 24 ENABLE PAR's.

DEC user PAR’s are initialized with 2000 and increment by 200.
Therefore, DEC user PAR's index into ENABLE PAR's 8-15.

DUPO = 2000
DUP1 = 2200
DUP2 = 2400
DUP3 = 2600
DUP4 = 3000
DUP5 = 3200
DUP6 = 3400
DUP7 = 3600

Once the DEC PAR's are initialized it is not necessary to
change them®. Thereafter when switching user processes only the
ENABLE USER PAR's will be modified. Also, A version of UNIX can be
used that allows more than 84k bytes of main store to be used by
a program while only manipulating the ENABLE Kernel PAR's.

A Minor Mishap with 170 Mapping

The Unibus was designed to support 18 bit DMA 1/0 devices[2].
Therefore on the 22 bit PDP-11's (11/70 class), an 1/0 map, called
Unibus Map, must also be provided to translate from 18 bit
addresses produced by the DMA hardware to the 22 bit addresses
that the memory system sees. It should be noted, that all DMA
hardware accesses memory at different times and through
different drivers than the cpu uses for an instruction or data
fetch. Which means on an 11/40 and 11/45 class processor, the
170 subsystem runs unmapped, producing physical address in
main memory. Able exploits the fact that both the 11/45 and 11/
40 class processors do not need a Unibus Map. Fortunately, DEC
did not assign any other 1/0 devices residing at the 170 map’s
location for these processors. Allowing our version of UNIX to
initialize this map, on our modified machines, in the same manner

8] The only time the kernel must modify these while running normally, is
when you wish to support the fuiword subroutines used by the
unsupported phyio(2) system call. This is because this subroutine is using
the mfpi instruction, which makes some rash assumptions about the state
of the DEC memory management registers.

-7 -

as unmodified UNIX does on the 11/70 class machines.

Unfortunately, it was found that the ENABLE board cannot be
running in 22 bit relocation mode with 1/0 mapping turned off.
Before enabling the ENABLE board both the 1/0 mapping and 22
bit relocation bits in the ENABLE SSR3 must have been set.

UNIX would like to set up the 170 mapping registers after the
kernel is loaded and running in 22 bit mode. Since both 1/0
mapping and 22 bit relocation bits must be set at the same time
the 1/0 map is enabled before the map is initialized! UNIX is now
running with an undefined 170 map.

These two bits should be independent of each other. The
system could then boot and run in 22 bit mode with the 170 map
turned off. The initialization code for the 1/0 map could be left in
machdep.c instead of having to move it into the assembler assist
that sets up the memory management unit.

Some Results

The authors ran a simple bench mark on four UNIX
configurations. These are: an unload 11/70 with 2 megabytes of
main memory and 2 RP06s; an unload 11/44 with 1/4 megabytes
of main memory and 1 RMO2; an 11/34 with 1/4 megabytes of
main memory and 2 RLOls; and the same 11/34 with 1/2 a
megabytes of main memory and the new ENABLE unit installed. We
understand that you must mellow these statistics due to the fact
that were running a UCB kernel on the 11/70 and 11/44. We were
running a DEC kernel on the 11/347. The actual bench mark was
to recompile the entire UNIX kernel from zero. What was typed into
UNIX:

8 rm dev/*.0 sys/*.o
time sh -x makeit

The file ‘makeit’”’ contained the lines:

7] The plan was to show you the differences after we had brought up the UCB
overlay kernel on the 34. Unfortunately, we were using borrowed memory
from Mostek Corporation for the extra 1/4 mega on the 34. We had to give
the memory back before we received the overlay code from UCB for the
11/34. We also were using a borrowed 11/34 from Tektronix Computer
Automation Support. We had to give this machine back after one week.
Once we get some system time again we will running the correct bench
mark, and republish these results.

cd dev
make

cd ../sys
make

cd ../conf
make unix

Some Numbers

_CPU Type Real | User | System|
11/70 13:06.0 | 5:02.9 3:12.3
11/44 238350 | 7:420 6:38:7
11/34 ph23:1 | 17:1238 |1 13082
11 /34 with ENABLE | 42:19:2 | 14:41:8 | 10:29:2

The 11/34 should come closer to the 11/44 performance once the
UCB changes have been added. Note that the extra memory help
the 11/34 because it did not have to swap to the extremely slow
RLO1s. When the Calgary mods are added the RL's will look much
better, because this kernel will be allowed to have 50 or 80 buffers.

For a matter of reference, we used the DEC V7 kernel for the
base 11/34 installation. This was because we felt that the people
at DEC would have a better idea of how to tune the an unmodified
34 system than we might. It also gave us a reference base. To
obtain their code write to:

The DEC UNIX Group
DEC, Continental Blvd
MK1-1/D29
Merrimack, NH 03054

I believe there is a charge for this tape, but check with DEC first.

In the case of the 11/44 and 11/70 we are running a Modified
UCB Kernel, from the San Fransico, prelease 2BSD system. We
have added a new TTY driver. Hopefully this will come in sync with
the UCB one. To obtain this tape, write to:

Bob Kridle

EECS Dept.

Cory Hall

UC Berkeley
Berkeley, CA 94720

Acknowledgments

The authors would like to acknowledge some groups for
helping with this effort. Armando Stettner at DEC for the 11/34
system; Mark Horton and Bob Kridle at UCB for help the 11/70
system; Larry Brown and his crew at Tek's Computer Automation
Support for the use of an 11/34 and helping us when our hardware
died; Mary Driscoll at Mostek Corp, for lending us the 22 Bit
memory; and Ken O’'Mohundro and Norm Kiefer at Able Corp for
the use of a pre-release ENABLE board.

10

References

1)

2.)
3.)

4)

5.)

6.)

Ritchie, D. and Thompson, K., the UNIX Timesharing system.,
Western Electric Corp.

DEC Processor handbook, Digital Equipment Corp.

UNIX Programmer’'s Manual, Sixth Edition, Western Electric
Corp.

UNIX Programmer’s Manual, Seventh Edition, Volume 1 & 2,
Western Electric Corp.

Haley, C. and Joy, W., revised by Jolitz, W., Running Large Text
Processes on Small UNIX Systems, UC Berkeley Technical
Report. Spring 1980

ENABLE user's guide, Able Computer Corp. Pre-release
Version, March 1981

11

Appendix A

Demonstration of Code Exparnsion - code.c

1 " i

2 . a demonstration of the add problem

3 e

4

5 short glob_short; /* This is short in global space */
6 short short_glob; /* This is short in global space */
7

8 long glob_long; /* This is long in global space */
9 long long_glob; /* This is long in global space */
10

11 main ()

12 {

13

14 short local _short; /* Thisis short in local space */
15 short short_local; /* This is short in local space */
16

17 long local _long; /* This is long in local space */
18 long long local; /* This is long in local space */
19

20 glob_short = 0;

21 short_glob = glob_short + 10;

R2

23 local _short = 0;

24 short_local = local _short + 10;

25

26 glob_long = 0;

_7 long_glob = glob_long + 10L;

28

29 local_long = 0;

30 long_local = local long + 10L;

31

()
N

J

Appendix B

..12_

Demonstration of Code Expansion - code.s

.data

.comm _glob_sh,2.
.comm _short_g,2.
.comm _glob_lo,4.
.comm _long_gl,4.

text
.globl
—Mmain: jsr
sub
clr
mov
add
mov
clr
mov
add
mov
clr
clr
mov
mov
add
adc
mov
mov
clr
clr
mov
mov
add
adc
mov
mov

jmp

—main

rd,csv

812.,sp

—glob_sh / line 20, file "code.c”
—glob_sh,r0 7 line 21, file “code.c”
$10.,r0

r0,_short_g

-8.(r5) / line 23, file "code.c”
-8.(r5),r0 / line 24, file "code.c”
810.,r0

r0,-10.(r5)

—glob_lo / line 28, file "code.c”
—glob_lo+2.

—glob_lo+2.,r1/ line 27, file "code.c”
—glob_lo,r0

810.r1

r0

rO0,_long_gl

rl, long._gl+2.

-14.(r5) / line 29, file "code.c”
~12.(r5)

-12.(r5).r1 / line 30, file "code.c”
-14.(r5),r0

$10.,r1

r0

r0,-18.(r5)

r1,-16.(r5)

cret

13

Appendix C
Virtual to Physical Address Mapping

15 13 -8 5 0
DEC VA | | | |
1610} erhg g
used 11 70 0
DEC PAR | | | |
N e gl g add 74
1953 A3 o 65 .0
DEC PA | | l l
16 bits
ABLE PAR |
; S g add /
ABLE
21 6 5 0

14

Appendix D

This is a annotated difference listing between the DEC sources
and our sources.
In param.h
add the two definitions
#define SID 0 /* 0= 1space only cpu */
f#define FORTYZ 41 /* Able Corp ENABLE Board */

In seg.h
change the definition of UISA to
#ifdef FORTYZ
#defineUISA ((physadr)0163720) /* 1st user I-space reg */
#else
(the original UISA definition)
#endif

In bio.c
surround the "mapfree” with
#if SID || FOURTYZ

#endif

In tm.c
surround the "mapalloc” with
#if SID || FOURTYZ

#endif

Inrl.c

surround the "mapalloc” with
#if SID || FOURTYZ

sendif

In machdep.c
re-define mmr3

/*** address of mmr3 to enable unibus map ***/
#ifdef FORTYZ
#define UBMC ((physadr)01636786)
#else
#define UBMC ((physadr)0172516)
#endif

add the following code to initialize the unibus map
#if (SID || FORTYZ)
if (((cputype == 70) || (cputype == 44))

15

| (cputype == FORTYZ)) §
for(i=0; i<82; i+=2) §
UBMAP->r[i] = i<<12;
UBMAP->r[i+1] = 0;
J
/* Enable the unibus map here instead of in the boot code.
* This is done to allow a unibus disk to be the
* system device. (rl02, rm02/3, rk06/7)
o
UBMC->r[0] =] 040;
printf("UNIBUS Map enabled0);

#endif

in the clkstart routine add the comments
lks = CLOCK1;
/ *
** We can not do a fuiword with the ENABLE Board
** therefore, we assume a line clock and not
** the programmable clock. this is a hack.
** fuiword should be fixed.
&

** if(fuiword((caddr_t)lks) == -1) §

e lks = CLOCKR;

ook if(fuiword((caddr_t)lks) == -1)
o panic('no clock”);

*x ;

4

lks->r[0] = 0115;
make the mapalloc and mapfree routines conditional
#if (SID || FORTYZ)

/*

* 11/70 routine to allocate the

* UNIBUS map and initialize for

* a unibus device.

* The code here assumes that anrh on an 11/70
*is an rh70 and contains 22 bit addressing.

*
int maplock;
mapalloc(bp)

register struct buf *bp;

register i, a;

-16_

if (((cputype != 70) && (cputype != 44))
&& (cputype '= FORTYZ))
return;
spl6(};
while(maplock&B_BUSY) §
maplock |= B_WANTED;
sleep((caddr_t)&maplock, PSWP+1);

maplock |= B_BUSY;

spl0();

bp->b_flags |= B_MAP;

a = bp->b_xmem;

for(i=16; i<32; i+=2)
UBMAP->r[i+1] = a;

for(a++; i<48; i+=2)
UBMAP->r[i+1] = a;

bp->b_xmem = 1;

i

mapfree(bp)
struct buf *bp;

i

bp->b_flags &= ~B_MAP;
if(maplock&B_WANTED)
wakeup((caddr_t)&maplock);

maplock = 0;
J
#else
mapalloc(bp)
struct buf *bp;
{
panic("We called mapalloc");
mapfree(bp)
struct buf *bp;
¢
panic("We called mapfree");
#endif
In mch.s
add to the front of the file the definition
FORTYZ = 41.

..17..

after the line
mov 8I0,(r0)+
in the user segment initialization add the following

.if FORTYZ

mov 810,(r0)+ / we use TWO copies

mov BKISA7,r0

mov 810,(r0) / turn on ENABLE’s IO page
.endif

mov $77408,(r1)+ / rw4k

.if FORTYZ
/ these are really the DEC Memory Management Registers
mov $2,r3

mov $PAR1,r0 / enable DEC User PARs
mov $2000,r1
mov $8.,r2 / do for 8 EPAR’s
br 1f

o mov $PAR2,r0 / enable DEC Kernel PARs
clr rl / EPAR'’s increment

mov 87,r2

5 mov ri1,(r0)+ / set up the PAR
add $200,r1 / increment to next page
sob r2,1b /any more registers to do
sob r3,2b / do the Kernel space reg’s
mov $101,(r0) / DEC KA7 sets up the 10 page
.endif

after the lines
/ get a sp and start segmentation

mov 8_u+[usize*84.],sp

inc SSRO / start DEC Memory Manager
add the following

.if FORTYZ

/ KLUDGE!"!! KLUDGE!!! KLUDGE!"!

bis $1022,SSR3 / start relocation to 22 bits
/ AND turn I0 MAP
/ KLUDGE!"" KLUDGE!"! KLUDGE!"
bis $BITO,SSR4 / enable the ENABLE board

.endif
at the end of the file add the following definitions

Aif FORTYZ :

SSR3 = 163676 / addr of ENABLE's SSR3
SSR4 = 163674 / addr of ENABLE's SSR4
KISAO = 1863700

KISA6 = 163714

KISA7 = 163776

18

UISAO = 163720

UISA1 = 163722 :

PAR1 = 177640 / the DEC user space PAR
PAR2 = 172340 / the DEC kernel space PAR
BITC = 000001

BIT4 = 000020

/ This is sort of a crock but fixes a bug

/ in the ENABLE board. BOTH must be on for

/ it to work. ctc, sjh 03/20/81

£

/ Turn on 10 Mapping & 22 Bit Addressing
1022 = 000060
10 177600 / ENABLE IO Register (16 bits wide)
101 7600 / DEC IO Register (12 bits wide)
—cputype: FORTYZ

.endif
and comment out the conflicting definitions as in
/ .if 'FORTYZ
/ KISAO = 172340
/ KISA8 = 172354
/ KISA7 = 172356
/ UISAQO = 177640
/ UISA1 = 177642
/10 =7600

/ —cputype: 40.
/ .endif

