REGENERATING SYSTEM SOFTWARE

This document discusses how to assemble or compile various parts of the MINI-UNIX system software.
This may be necessary because a command or library is accidentally deleted or otherwise destroyed;
also, it may be desirable to install a modified version of some command or library routine. It should be
noted that in the system as distributed, there are quite a few commands that depend to some degree on
the current configuration of the system; thus in any new system modifications to some commands are
advisable. Most of the likely modifications relate to the standard disk devices contained in the system.
For example, the df ("disk free") command has built into it the names of the standardly present disk
storage drives (e.g. "/dev/rk0", "/dev/rk1"). Df takes an argument to indicate which disk to examine,
but it is convenient if its default argument is adjusted to reflect the ordinarily present devices.

The companion document "Setting up MINI-UNIX" discusses which commands are likely to require
changes.

The greater part of the source files for commands resides in several subdirectories of the directory
/usr/source. Each directory and subdirectory contains a "run” file which contains "shell" sequences for
re-compiling all commands in that directory. These subdirectories, and a general description of their
contents, are

sl Source files for most commands with names beginning with "a" through "1".

s2 Source files for most commands with names beginning with "m" through "z2".

s3 Source files for subroutines contained in the standard system library, "/lib/liba.a" (see
below).

s4 Source files for the C library, "/lib/libc.a" (see below).
s5 Source files for more of the C library.

s7 Contains the source files for all the text formatters roff, nroff and neqn. They are separate
because they overioaded the s2 directory. '

as Source files for assembier.

¢ Source files for C compiler.

cref Source files for cross reference program.
fort Source files for Fortran Compiler.

iolib Source files for Portable C library.

mé. Source files for Macro Processor.

mdec Source files for utility and boot programs.
rat Source files for Ratfor.

salloc Source files for storage allocation routines.
sno Source files for Snobol Interpreter.

tmg Source files for TMG compiler-compiler.

REGENERATING SYSTEM SOFTWARE
yacc Source files for YACC compiler-compiler.

To regenerate most commands in the sl and s2 directories is straightforward. The appropriate directory
will contain one or more source files for the command. These will all have the suffix ".s" if the com-
mand is written in assembler language, or ".c" if it is written in C. The first part of the name begins
with the name of the command. If there are several source files, the command name will be followed
by a character which distinguishes the several files. it is typically 1", "2", ...; Sometimes the last is "x".
For example, The "bas" command has source files (in s1) called "bas0.s", "basl.s", ..., "bas4.s", "basx.s".
In all cases, the lexicographical order of the distinguishing character is the order in which the source
files should be compiled or assembied. Thus, for example, the way to reassemble a new "bas” is to say
(in s1))

as bas?.s
Some of the assembly-language commands are compietely stand-alone and require no inclusion of
routines from system libraries. Unfortunately there is no a priori way of determining which need
library routines. A simple a posteriori method is to assemble the command as discussed above, then say
nm -u a.out
which will list the undefined external symbols. If any appear, the loader should be called by saying
id a.out -]
However all assembly-language programs require the application of the link editor /4 (also loosely called
the loader), since the link editor automatically relocates the object code to 060000 for a 12K MINI-

UNIX system.

One important command which needs slightly special treatment is "tp" which has to be loaded with the
C library:

as ip?.s
Id a.out -] -Ic

because it calls the C-language ctime subroutine.

As it happens, there are no commands written in C (except those described below) which consist of
more than one file. The command "com.c” can therefore be recompiled simply by saying

cc -0 com.c
Here the "-O" indicates the desire to use the optimizer pass of the C compiler.

Some of the most important commands are considerably more complicated to regenerate, and these are
discussed specifically below. The contents of libraries are also discussed.

AS

The assembler consists of two executable files: /bin/as and /lib/as2. The first is the O-th pass: it reads
the source program, converts it to an intermediate form in a temporary file "/tmp/atm0?", and esti-
mates the final locations of symbols. It also makes two or three other temporary files which contain the
ordinary symbol table, a table of temporary symbols (like n:) and possibly an overflow intermediate
file. The program /lib/as2 acts as an ordinary two-pass assembler with input taken from the files pro-
duced by /bin/as.

REGENERATING SYSTEM SOFTWARE

The source files for /bin/as are named "/usr/source/s1/as1?.s" (there are 9 of them); /lib/as2 is pro-
duced from the source files "/usr/source/sl/as2?.s"; they likewise are 9 in number. Considerable care
should be exercised in replacing either component of the assembler. Remember that if the assembler is
lost, the only recourse is to replace it from some backup storage; a broken assembler cannot assembie
itself. ’

C

The C compiler consists of four files: "/bin/cc”, which expands compiler control lines and which calls
the phases of the compiler proper, the assembler, and the loader; "/lib/c0", which is the first phase of
the compiler; "/lib/c1", which is the second phase of the compiler ; and "/lib/c2", which is the optional
third phase optimizer. The loss of the C compiler is as serious as that of the assembler.

The source for /bin/cc resides in "/usr/source/sl/cc.c”. Its loss alone is not fatal. Provided that prog.c
does not contain any compiler control lines, prog.c can be compiled by

/1ib/c0 prog.c temp0 templ
/lib/cl temp0 templ temp2
as - temp2

id /lib/crt0.0 a.out -lc -1

If /bin/cc is lost, it can be recovered in this way, since it contains no compiler control lines.

The source for the compiler proper is in the directory /usr/c. The first phase (c0) is generated from
the files c00.c, ..., ¢05.c, which must be compiled by C; cOt.s, which must be assembled; and cOh.c,
which is a header file which should not be compiled but is a file included by the C programs of the first
phase. The cOt.s program contains a parameter "fpp" which determines whether C is to be used on a
machine which has PDP 11/45 floating-point hardware; it should be set to 1 if so, 0 if not. In the stan-
dard system fpp is 0. To make a new /lib/c0, assemble cOt.s, name the output c0t.0, and

cc cOt.o c0[0-5].c
Before installing the new c0, it is prudent to save the old one someplace.

The second phase of C (/lib/cl) is generated from the C source files cl0.c, ..., c13.c, the assembly-
language program clt.s, the include-file clh.c, and a library of object-code tables called tab.a. To gen-
erate a new second phase, assemble clt.s, call it clt.o, and

cc c¢lt.o c1[0-3).c tab.a

It is likewise prudent to save cl before installing a new version. In fact in general it is wise to save the
object files for the C compiler so that if disaster strikes C can be reconstituted without a working ver-
sion of the compiler.

In a similar manner, the third phase of the C compiler (/lib/c2) is made up from the files ¢20.¢c and
c21.c together with c2h.c. Its loss is not critical since it is completely optional.

The library of tables mentioned above is generated from the files regtab.s, sptab.s, cctab.s, and efftab.s.
The order is not important. These ".s" files are not in fact assembler source: they must be converted by
use of the cvopr program, whose source and object are located in the C directory. For example:

cvopt regtab.s temp
as temp

mv a.out regtab.o
ar r tab.a regtab.o

REGENERATING SYSTEM SOFTWARE

Refer to the run shell sequence in the C directory for more complete details.

FORTRAN

Probably because it is a very large subsystem written entirely in assembly language, Fortran is quite
complicated to regenerate. On the other hand, Fortran is vital only to its own users; since none of the
compiler nor any important part of the run-time system is written in Fortran, both can be regenerated
in case of loss.

_ The f& command itself is essentially equivalent to a long shell command file; for a single source pro-
gram prog.f, it amounts to saying

/usr/fort/fcl prog.f
as - f.tmpl
Id /lib/fr0.0 a.out /lib/filib.a -If -1

Thus, /usr/fort/fcl is the compiler proper; fcl leaves its output in the current directory in the file
"f.tmpl”". /lib/fr0.0 is the runtime startoff. Filib.a is the library of operators; Fortran is essentially
interpretive, and operations such as "add floating variable to floating variable” are short routines loaded
from the filib.a library.

/lib/libf.a (specified by the "-If") is an archive file containing the language builtin functions plus a few
others. The standard assembly language library (the "-1", or /lib/liba.a) is referenced by certain of the
builtin functions (for routines like sin).

The source and object of the compiler are stored in subdirectories of the /usr/fort directory, named f1,
f2, f3, f4, and fx. The first four represent putatively separable phases; the last contains subroutines
used by several of the phases. Each directory contains an archive file with the object programs
corresponding to the source programs in that directory; it is called f? 0.2 where "?" is the last letter in
the directory name. To reload Fortran from theses libraries, see the Shell command file /usr/fort/1d,
which should contain

Id -u passl -u pass2 -u pass3 -u pass4 \
f1/flo.a f2/f20.a f3/f30.2 f4/f40.a fx/fxo0.a -1

Each subdirectory should contain a Shell command file called "as" which assembles a particular file in
that subdirectory; the one for f1 contains, for example,

as ../fx/fhd.s f181.s
mv a.out $l.o0

arr flo.a f18l.0
rm f181.0

so that the command
shas $

would assemble f15.s (preceded by the definition file /usr/fort/fx/fhd.s) and place it in the library for
that subdirectory.

Actually we hope that no one will be required to make a new Fortran from the pieces, or fix it them-
selves. For those who are curious, we will say that phase 1 analyzes declarations, phase 2 does storage
allocation, phase 3 code generation, and phase 4 puts out constants, code from format and data state-
ments, and the actual storage-reserving code for variables.

REGENERATING SYSTEM SOFTWARE

MINI-UNIX

The source and object programs for MINI-UNIX are kept in /usr/sys and three subdirectories therein.
The main directory contains several files with names ending in ".h"; these are header files which are
picked up (via "#include ...") as required by each system module. The files libl and lib2 are libraries
(archives) of (almost) all the object programs in the system. Libl is made from the source programs in
the subdirectory mxsys; lib2 is made from the programs in subdirectory dev. The latter consists mostly
of the device drivers together with a few other things, the former is the rest of the system.

Subdirectory source contains the source code for all MINI-UNIX user programs which have been
modified from the standard UNIX programs.

The mxsys subdirectory contains the progams which control the device configuration of the system.
Low.s specifies the contents of the interrupt vectors; conf.c contains the tables which relate device
numbers to handler routines. A third program, mch.s, contains all the machine-language code in the
system. A fourth program, emul.s contains the software emulation package to handle the extended
instruction set, i.e. those instructions which are not implemented in the PDP-11/20 and PDP-11/10
processor hardware.

To recreate the system, compile conf.c and move the output to /usr/sys/conf.o. Assemble low.s and
move the output to /usr/sys/low.o. Then change to /usr/sys, and load the whole system:

Id -a -x low.o conf.o libl lib2

For convenience, this command line has been placed into /usr/sys/shld. Consult the "run" file and the
companion document "Setting Up MINI-UNIX - Sixth Edition" for further details on creating a new
system.

When the I/d is done, the new system is present as a.our. It can also be tested by putting it on tape (tp-
I) and using tboot or mboot, or directly using uboot (boot procedures-VIII). When you have satisfied
yourself that it works, it should be copied to /mx so that programs like ps (I) can use it to pick up
addresses in the system.

A word of caution is in order here. The size of a.out must be less than 055400 bytes for the system to
run properly. If the system is bigger than this, its size can be reduced by removing one more system
buffer (NBUF in param.h) and recompiling all of the system source using the "shs" shell sequence file
in the mxsys subdirectory. If enough space cannot be achieved in this manner, the system size must
grow beyond 12K words to the next convenient boundary. This requires major surgery; therefore think
twice before you do it. To form a new system with the size greater than 12K words, the file
"mxsys/param.h” must be edited to change the following three parameters:

UCORE

TOPSYS

SWPSIZ.
Re-compile the complete system using the "run” command as before. A new root file system must be
made and all system command programs must be re-compiled. Before proceeding, change the value of
the TOPSYS parameter in "sys/source/ld.c” to the appropriate value and re-compile the link editor /d.
At some point the value of "uorg" in sys/source/dbl.s must also be changed and the debugger db re-
assembled and link-edited for the new root file system. The complete re-compilation of all user com-
mand programs is likely to take the better part of a day.

To install a new device driver, compile it and place the object in lib2 if necessary. (All the device
drivers distributed with the system are already there.) The device’s interrupt vector must be entered in
low.s. This involves placing a pointer to a callout routine and the device’s priority level in the vector.
As an example, consider installing the interrupt vector for DC11 number 2. Its receiver interrupts at
location 320 and the transmitter at 324, both at priority level 5. Then low.s has:

REGENERATING SYSTEM SOFTWARE

.= 320"
dcin; br5+2
dcou; br5+2

First, notice that the entries in low.s must be in order, since the assembler does not permit moving the
location counter "." backwards. The assembler also does not permit assignation of an absolute number
to ".", which is the reason for the ". = 320"." subterfuge; consult the Assembler Manual for the mean-
ing of the notation. If a constant smaller than 16(10) is added to the priority level, this number will be
available as the first argument of the interrupt routine. This stratagem is used when several similar
devices share the same interrupt routine.

At the end of low.s, add

.globl _dcrint
dein:
jsr r0,call; _dcrint

.globl _dcxint
dcou:
jsr r0,call; _dcxint

The call routine saves registers as required and makes a C-style call on the actual interrupt routine
(here _dcrint and _dcxint) named after the jsr instruction. When the routine returns, call restores the
registers and performs an rti instruction.

To install a new device thus requires knowing the name of its interrupt routines. These routines are in
general easily found in the driver; they typically end in the letters "int" or "intr." Notice that external
names in C programs have an underscore "_" prepended to them.

The second step which must be performed to add a new device is to add it to the configuration table
/usr/sys/mxsys/conf.c. This file contains two subtables, one for block-type devices, and one for
character-type devices. Block devices include disks, DECtape, and magtape. All other devices are char-
acter devices. A line in each of these tables gives all the information the system needs to know about
the device handler; the ordinal position of the line in the tabie implies its major device number, starting
at 0. The appropriate editing must be done in conf.c and then it must be re-compiled and the object
module moved to /usr/sys/conf.o.

There are four subentries per line in the block device table, which give its open routine, close routine,
strategy routine, and device table. The open and close routines may be nonexistent, in which case the
name “"nulldev" is given; this routine merely returns. The strategy routine is called to do any 1/0, and
the device table contains status information for the device.

For character devices, each line in the table specifies a routine for open, close, read, and write, and one
which sets and returns device-specific status (used, for example, for stty and gtty on typewriters). If
there is no open or close routine, "nulldev” may be given; if there is no read, write, or status routine,
"nodev" may be given. This return sets an error flag and returns.

The above discussion is admittedly rather cryptic in the absence of a general description of system 1/O
interfaces.

The final step which must be taken to install a device is to make a special file for it. This is done by
mknod (VIII), to which you must specify the device class (block or character), major device number
(relative line in the configuration table) and minor device number (which is made available to the
driver at appropriate times).

